Tampilkan postingan dengan label scarph. Tampilkan semua postingan
Tampilkan postingan dengan label scarph. Tampilkan semua postingan

Rabu, 19 Oktober 2016

Joining Plywood Scarph Joints

This is the first of a series of posts about the methods of joining plywood. It is not a course to teach how to do this work but a basic explanation of how it is made and the benefits and drawbacks. Refer to that excellent book "The Gougeon Brothers on Boat Construction" to see various methods for making joints on plywood and solid timber.

I am starting with my preferred method first, only because this has been the subject of discussion between me and a couple of other people recently. This is the scarph (or scarf) joint, more technically known as a feathered scarph because the slope tapers off to a "feathered" edge.

Most amateurs have a fear of making scarph joints that fits anywhere between mild trepidation and total panic. In reality a scarph on plywood is relatively simple work to do. If you can handle a hand plane with reasonable accuracy then you can scarph plywood. A scarph joint is no more than a sloping butt joint between the ends of two sheets or lengths of timber, generally sloped at between 6:1 and 10:1. The 1 is in the thickness of the timber and the other number is in the length of the timber. For scarphing plywood I would generally use about 8:1 slope. So, in 6mm plywood it would be 48mm and 12mm plywood would be 96mm. These numbers are not finite rules, so they can be rounded off to 50mm and 100mm respectively for simplicity as long as both halves are planed to the same angle. In imperial measurements an 8:1 scarph on 1/4 plywood will be 2" wide and 4" on 1/2" plywood.

The Anatomy of an 8:1 Scarph Joint on 12mm Plywood

It needs only a tape measure, straight edge and pencil to mark the scarph, in addition to the plane. Once you have the plywood panel cut to required shape to fit the boat, you will measure in from the edge that will be scarphed by the width of the scarph. Do this at three or more places along the edge, which will show up any errors in your measurement if the straight edge does not touch all points. Draw a pencil line with the straight edge to define the edge of the slope.

If you have a hand power plane, this will make short work of removing the excess material but dont try to get up close to the line or you will risk messing up. Stop at least 3mm above your line then use a sharp jack plane to take it down to the finished surface. The closer you get to the finished surface the finer the plane must be set. Remember that you are working to create a feathered edge right at the edge of the board, so you dont want to remove any material that will destroy that edge. Clamping your board to another sheet of plywood or a firm table, with the edges aligned, will support the feathered edge so that it doesnt move away from the plane when you work.

I cant emphasise "sharp" strongly enough for the plane blade. It must be as sharp as you can get it and you should hone the plane blade again before each scarph is planed. You will be planing across the end grain of alternate layers, which will rip instead of being sliced if the plane is blunt, ruining the accuracy.

Use the edge of your plane or a straight edge to check that your slopes are straight. If you can see light under the straight edge then the surface is not straight. If the surface is concave then the middle of the joint will be hollow. If convex then the feathered edge will not lie against the other sheet so you will have gaps .

If you dont have a hand plane but have a skill saw, you can buy a "SCARFFER" attachment that bolts to the base plate to set the slope. You can see this attachment in use in the Gougeon book mentioned above. I did the same by cutting a block of wood to the required angle and bolting that to the base of my skill saw.

If you have neither a power plane nor a skill saw then you can still do it all by hand. Start with the plane set coarse until you are nearing the line, then sharpen the plane and set it more fine for the final finishing.

Be careful not to make the most common error, which I have done a few times. That is to plane both slopes onto the same side of the plywood instead of onto opposite sides. You dont realise your error until you bring the two pieces together and they dont match.

Is it a problem if your scarphs are not entirely true? That depends on how big the error as well as what glue you are using. Epoxy has better gap-filling properties than resorcinol and also gives a stronger joint if there is a film of epoxy between the two surfaces that are being glued. Resorcinol gives maximum joint strength when there is wood-to-wood contact, so epoxy is more tolerant of bad joints than resorcinol. Still, dont use the fact that you are using epoxy adhesives as an excuse to accept shoddy workmanship from your own hands.

When gluing the joint, remember that end grain is thirsty and will suck glue out of the joint, so dont skimp on the glue. Let the glue lie on the surface for a few minutes so that it can soak in, then apply some more if needed.

Scarph joints on plywood are a lot stronger than the wood that is being glued, so there is a natural safety factor. Also, you will generally be attaching the panels to a wood structure that has stringers and other longitudinal timbers crossing the joint and reinforcing it. You are very unlikely to ever break that scarph once the panels are glued onto the boat.

Making scarph joints is satisfying work once you get the hang of it. It produces a nice smooth surface both inside and outside, much nicer if your boat will not have hull liners covering up all of your handiwork. Scarph joints are neat, strong and can be made by hand. I cant think of any disadvantages to this joint, aside from the unnecessary fear of making them.
Read More..

Kamis, 16 Juni 2016

Joining Plywood Stepped Scarph Joints

A stepped scarph joint is the mechanically produced equivalent to a hand-planed sloping scarph joint. It is normally cut on a CNC router that has only three axes of movement, namely forward/backward, side-to-side and up-and-down. The sloping face of the hand-planed scarph is replaced by a series of small steps, each comprising a small vertical face and a broad horizontal face that coincide with mating faces on the other piece to which it will be bonded.

The main problem with stepped scarphs is similar to that with sloping scarphs. That is attaining proper alignment when gluing the joint and keeping it aligned until the glue has set. A sloping scarph can and will slide in almost any direction as soon as the slippery glued surfaces are brought together, so it has to be very carefully clamped. A stepped scarph cannot slide forward because the steps prevent it but it can slide back or sideways. Again, it needs careful alignment and clamping.

Various methods have been developed by different companies to overcome this problem. These methods are not patented, so can be used by others.

Mechtronics in Cape Town, South Africa, use a dowel peg system to lock the joints. The holes for the pegs are drilled by the CNC machine and hold the joint so securely that the panel can be moved right after the joint is made, without having to wait for the glue to set. After the glue has set the joint is sanded smooth with a belt sander, which also trims the dowels flush.

Mechtronics panel as it comes off the CNC machine
Mechtronics stepped scarph joint completed.
Ertug in Istanbul, Turkey, achieve a similar locking effect by programming the CNC machine to form islands in the one half of the stepped scarph that lock into holes that are cut into the other half. This is also a very neat solution.
Ertug stepped joint details.
Stepped scarph joints are good for any size of boat but care needs to be taken in high load situations or where there may be flexing of the panel. The weakness of this joint is in potential cracking along the surface joint lines, either from stress in the panel or from bending. Joints should, where possible, be kept away from edges of openings that might align loads along the joint to promote cracking. Edges of openings must be reinforced with wood perimeter frames or with glass or carbon tapes to spread the loads away from the corners and into the panel surfaces. The weak areas of the joint can also be reinforced with glass tape laid across the surface joints. Joinery shelves or locker tops that span across the joint also help by stiffening the panel, preventing flexing that might initiate surface cracking.

The CNC operator must take extreme care when cutting scarph joints to ensure that the plywood is hard against the sacrificial backing board during cutting, or the accuracy of the stepped surfaces deteriorates. There must be a vacuum on the table to suck the sheet against the table, as a basic requirement. If this is insufficient then plastic nails should be used to mechanically fasten the sheet to the table. All waste material must be efficiently removed as it comes off the router bit so that there is no chance of it getting between the sheet and table. This is best done with vacuum right at the cutting tool. Finally, the cutting paths need to be programmed so that any puncturing of the full depth of the sheet happens as the last stage of the cutting process. If it happens earlier it will increase the chances of waste material getting under the sheet and it will weaken the vacuum that is sucking the sheet against the table.

See our range of designs at http://dixdesign.com/ .
Read More..
 
boat design plans - Powered By Blogger